Training, Nutrition, and Sports Supplement Strategies of an Elite Female Masters Cyclist: A Case Study Case Study
Main Article Content
Keywords
endurance, periodization, high protein, macronutrient, polarized training
Abstract
Background: The purpose of this case report was to compare the training, diet, and supplement strategies of a 54-year-old female national-class cyclist to what is typically recommended in the literature.
Methods: This case study examined the training, nutrition, and supplement strategies of a 54-year-old Masters female cyclist who won the 2023 USA Cycling Time Trials. Data was acquired via a smartwatch that the athlete wore in all of her training sessions over 29 weeks, outlining the volume of training as well as macronutrient and supplement consumption.
Results: Her average weekly training volume was 167.0±61.4 miles (268.8±98.8 km; mean ± standard deviation [SD]). The number of training sessions per week was 8.4±2.1. In addition, the percentage of the weekly training sessions that consisted of high-intensity interval training was 55.3±20.1 %. Her mean energy intake was 2444±101 kcal or 36.6 kcal/kg. Her macronutrient intake was 228±33 grams (g) of carbohydrate, 95±34 g of fat, and 196±25 g of protein. Expressed per unit body weight daily (kilograms or kg), her macronutrient intake was 3.3 g/kg carbohydrate, 1.4 g/kg fat, and 2.9 g/kg protein. After 29 weeks of training, the athlete won first place in the 30k USA Cycling Time Trial (Masters) with an average speed of 23.35 miles per hour (37.6 km/hr.).
Conclusions: The results highlight that for this particular female athlete, consuming a high-protein diet coupled with a moderate intake of carbohydrates is a viable strategy for endurance events (e.g., cycling time trials). It should also be noted that the majority of her training sessions consisted of interval training.
References
2. Turner A. The science and practice of periodization: a brief review. Strength & Conditioning Journal. 2011;33(1):34-46.
3. Galán-Rioja MÁ, Gonzalez-Ravé JM, González-Mohíno F, Seiler S. Training Periodization, Intensity Distribution, and Volume in Trained Cyclists: A Systematic Review. International Journal of Sports Physiology and Performance. 2023;1(aop):1-11.
4. Kerksick CM, Wilborn CD, Roberts MD, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. Aug 1 2018;15(1):38. doi:10.1186/s12970-018-0242-y
5. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet. Mar 2016;116(3):501-528. doi:10.1016/j.jand.2015.12.006
6. Burke LM. Nutritional practices of male and female endurance cyclists. Sports Med. 2001;31(7):521-32. doi:10.2165/00007256-200131070-00007
7. Vitale K, Getzin A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients. Jun 7 2019;11(6)doi:10.3390/nu11061289
8. Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of applied physiology. 2013;
9. Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in physiology. 2014;5:33.
10. Hydren JR, Cohen BS. Current scientific evidence for a polarized cardiovascular endurance training model. The Journal of Strength & Conditioning Research. 2015;29(12):3523-3530.
11. Noakes T. Lore of Running. 4th ed ed. . Champaign, IL: Human Kinetics; 2001.
12. Steinacker JM, Lormes W, Lehmann M, Altenburg D. Training of rowers before world championships. Occupational Health and Industrial Medicine. 1998;4(39):189.
13. Schumacher YO, Mueller P. The 4000-m team pursuit cycling world record: theoretical and practical aspects. Medicine & Science in Sports & Exercise. 2002;34(6):1029-1036.
14. BILLAT VL, DEMARLE A, SLAWINSKI J, PAIVA M, KORALSZTEIN J-P. Physical and training characteristics of top-class marathon runners. Medicine & Science in Sports & Exercise. 2001;33(12):2089-2097.
15. Dietary Supplement Health and Education Act of 1994
Public Law 103-417, 103rd Congress. https://ods.od.nih.gov/About/DSHEA_Wording.aspx#sec3
16. Higgins S, Straight CR, Lewis RD. The Effects of Preexercise Caffeinated Coffee Ingestion on Endurance Performance: An Evidence-Based Review. International Journal of Sport Nutrition and Exercise Metabolism. 01 Jun. 2016 2016;26(3):221-239. doi:10.1123/ijsnem.2015-0147
17. Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. Apr 2005;15(2):69-78. doi:10.1111/j.1600-0838.2005.00445.x
18. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. Jan 2009;23(1):315-24. doi:10.1519/JSC.0b013e31818b979a
19. Guest NS, Vandusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. Journal of the International Society of Sports Nutrition. 2021;18(1)doi:10.1186/s12970-020-00383-4
20. Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J Sci Med Sport. Feb 2019;22(2):232-238. doi:10.1016/j.jsams.2018.07.022
21. Southward K, Rutherfurd-Markwick KJ, Ali A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med. Aug 2018;48(8):1913-1928. doi:10.1007/s40279-018-0939-8
22. Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115-20. doi:10.1080/02640414.2011.632431
23. Graham-Paulson T, Perret C, Goosey-Tolfrey V. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users. Nutrients. Jun 25 2016;8(7)doi:10.3390/nu8070393
24. Prins PJ, Goss FL, Nagle EF, et al. Energy Drinks Improve Five-Kilometer Running Performance in Recreational Endurance Runners. J Strength Cond Res. Nov 2016;30(11):2979-2990. doi:10.1519/jsc.0000000000001391
25. Evans M, Tierney P, Gray N, Hawe G, Macken M, Egan B. Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes With Low Habitual Caffeine Consumption. Int J Sport Nutr Exerc Metab. May 1 2018;28(3):221-227. doi:10.1123/ijsnem.2017-0217
26. O'Rourke MP, O'Brien BJ, Knez WL, Paton CD. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J Sci Med Sport. Apr 2008;11(2):231-3. doi:10.1016/j.jsams.2006.12.118
27. Ryan EJ, Kim CH, Fickes EJ, et al. Caffeine gum and cycling performance: a timing study. J Strength Cond Res. Jan 2013;27(1):259-64. doi:10.1519/JSC.0b013e3182541d03
28. Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med Sci Sports Exerc. Aug 2018;50(8):1570-1578. doi:10.1249/MSS.0000000000001596
29. Lara B, Ruiz-Vicente D, Areces F, et al. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr. Sep 28 2015;114(6):908-14. doi:10.1017/s0007114515002573
30. Stadheim HK, Nossum EM, Olsen R, Spencer M, Jensen J. Caffeine improves performance in double poling during acute exposure to 2,000-m altitude. J Appl Physiol (1985). Dec 15 2015;119(12):1501-9. doi:10.1152/japplphysiol.00509.2015
31. RB K, CD W, L T, et al. - ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7(7):1550-2783.
32. Kreider RB, Kalman DS, Antonio J, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition. 2017;14(1)doi:10.1186/s12970-017-0173-z
33. Kilduff LP, Georgiades E, James N, et al. The effects of creatine supplementation on cardiovascular, metabolic, and thermoregulatory responses during exercise in the heat in endurance-trained humans. Int J Sport Nutr Exerc Metab. Aug 2004;14(4):443-60. doi:10.1123/ijsnem.14.4.443
34. Hill CA, Harris RC, Kim HJ, et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. Feb 2007;32(2):225-33. doi:10.1007/s00726-006-0364-4
35. Stout JR, Cramer JT, Zoeller RF, et al. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32(3):381-6. doi:10.1007/s00726-006-0474-z
36. Ghiasvand R, Askari G, Malekzadeh J, et al. Effects of Six Weeks of β-alanine Administration on VO(2) max, Time to Exhaustion and Lactate Concentrations in Physical Education Students. Int J Prev Med. Aug 2012;3(8):559-63.
37. Jagim AR, Wright GA, Brice AG, Doberstein ST. Effects of beta-alanine supplementation on sprint endurance. J Strength Cond Res. Feb 2013;27(2):526-32. doi:10.1519/JSC.0b013e318256bedc
38. Smith-Ryan AE, Fukuda DH, Stout JR, Kendall KL. High-velocity intermittent running: effects of beta-alanine supplementation. J Strength Cond Res. Oct 2012;26(10):2798-805. doi:10.1519/JSC.0b013e318267922b
39. Trexler ET, Smith-Ryan AE, Stout JR, et al. International society of sports nutrition position stand: Beta-Alanine. Journal of the International Society of Sports Nutrition. 2015;12(1)doi:10.1186/s12970-015-0090-y
40. Ducker KJ, Dawson B, Wallman KE. Effect of beta-alanine supplementation on 2000-m rowing-ergometer performance. Int J Sport Nutr Exerc Metab. Aug 2013;23(4):336-43. doi:10.1123/ijsnem.23.4.336
41. Stout JR, Cramer JT, Mielke M, O'Kroy J, Torok DJ, Zoeller RF. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res. Nov 2006;20(4):928-31. doi:10.1519/r-19655.1
42. Vandenbogaerde TJ, Hopkins WG. Effects of Acute Carbohydrate Supplementation on Endurance Performance. Sports Medicine. 2011/09/01 2011;41(9):773-792. doi:10.2165/11590520-000000000-00000
43. Andrews JL, Sedlock DA, Flynn MG, Navalta JW, Ji H. Carbohydrate loading and supplementation in endurance-trained women runners. J Appl Physiol (1985). Aug 2003;95(2):584-90. doi:10.1152/japplphysiol.00855.2002
44. Jackson AS, Pollock ML. Practical Assessment of Body Composition. Phys Sportsmed. May 1985;13(5):76-90. doi:10.1080/00913847.1985.11708790
45. Melin A, Tornberg ÅB, Skouby S, et al. Energy availability and the female athlete triad in elite endurance athletes. Scandinavian journal of medicine & science in sports. 2015;25(5):610-622.
46. Robert-McComb JJ, Loucks AB. The Female Athlete Triad: Key Points for Health and Fitness. 2014;
47. Constantini NW, Alves E, Mountjoy M, Ackerman K. Relative energy deficiency in military (RED-M). BMJ Military Health. 2023:e002341.
48. Jager R, Kerksick CM, Campbell BI, et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20. doi:10.1186/s12970-017-0177-8
49. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics. 2016;116(3):501-528.
50. Phillips SM. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. Aug 2012;108 Suppl 2:S158-67. doi:10.1017/S0007114512002516
51. Williamson E, Fung HJW, Adams C, West DWD, Moore DR. Protein Requirements Are Increased in Endurance-Trained Athletes but Similar between Females and Males during Postexercise Recovery. Med Sci Sports Exerc. Oct 1 2023;55(10):1866-1875. doi:10.1249/MSS.0000000000003219
52. Antonio J. High-protein diets in trained individuals. Res Sports Med. Apr-Jun 2019;27(2):195-203. doi:10.1080/15438627.2018.1523167
53. Antonio J, Ellerbroek A. Case Reports on Well-Trained Bodybuilders: Two Years on a High Protein Diet. Journal of Exercise Physiology Online. 2018;21(1)
54. Burke LM, Cox GR, Culmmings NK, Desbrow B. Guidelines for daily carbohydrate intake: do athletes achieve them? Sports Med. 2001;31(4):267-99. doi:10.2165/00007256-200131040-00003
55. Deldicque L, Francaux M. Recommendations for Healthy Nutrition in Female Endurance Runners: An Update. Front Nutr. 2015;2:17. doi:10.3389/fnut.2015.00017
56. Kerksick CM, Wilborn CD, Roberts MD, et al. ISSN exercise & sports nutrition review update: research & recommendations. Journal of the international society of sports nutrition. 2018;15(1):38.
57. Foster C, Casado A, Esteve-Lanao J, Haugen T, Seiler S. Polarized Training Is Optimal for Endurance Athletes. Med Sci Sports Exerc. Jun 1 2022;54(6):1028-1031. doi:10.1249/MSS.0000000000002871
58. Burnley M, Bearden SE, Jones AM. Polarized Training Is Not Optimal for Endurance Athletes. Med Sci Sports Exerc. Jun 1 2022;54(6):1032-1034. doi:10.1249/MSS.0000000000002869
59. Lucía A, Hoyos J, Pérez M, Chicharro JL. Heart rate and performance parameters in elite cyclists: a longitudinal study. Medicine and science in sports and exercise. 2000;32(10):1777-1782.
60. Ingham SA, Carter H, Whyte GP, Doust JH. Physiological and performance effects of low-versus mixed-intensity rowing training. Medicine and science in sports and exercise. 2008;40(3):579-584.
61. Treff G, Winkert K, Sareban M, Steinacker JM, Becker M, Sperlich B. Eleven-week preparation involving polarized intensity distribution is not superior to pyramidal distribution in national elite rowers. Frontiers in physiology. 2017;8:515.
62. Jäger R, Kerksick CM, Campbell BI, et al. International society of sports nutrition position stand: protein and exercise. Journal of the International Society of Sports Nutrition. 2017;14(1):20.
63. Antonio J, Ellerbroek A, Evans C, Silver T, Peacock CA. High protein consumption in trained women: bad to the bone? Journal of the International Society of Sports Nutrition. 2018;15(1):6.
64. Forbes SC, Candow DG, Neto JHF, et al. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr. Dec 2023;20(1):2204071. doi:10.1080/15502783.2023.2204071
65. Bellinger PM, Minahan CL. The effect of beta-alanine supplementation on cycling time trials of different length. Eur J Sport Sci. Oct 2016;16(7):829-36. doi:10.1080/17461391.2015.1120782
66. Brisola GMP, Zagatto AM. Ergogenic Effects of beta-Alanine Supplementation on Different Sports Modalities: Strong Evidence or Only Incipient Findings? J Strength Cond Res. Jan 2019;33(1):253-282. doi:10.1519/JSC.0000000000002925
67. Glenn JM, Smith K, Moyen NE, Binns A, Gray M. Effects of Acute Beta-Alanine Supplementation on Anaerobic Performance in Trained Female Cyclists. J Nutr Sci Vitaminol (Tokyo). 2015;61(2):161-6. doi:10.3177/jnsv.61.161
68. Lara B, Salinero JJ, Giraldez-Costas V, Del Coso J. Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes. Eur J Nutr. Oct 2021;60(7):4107-4114. doi:10.1007/s00394-021-02510-6
69. Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. Jan 2 2021;18(1):1. doi:10.1186/s12970-020-00383-4
70. Lei TH, Qin Q, Girard O, et al. Caffeine intake enhances peak oxygen uptake and performance during high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol. Feb 2024;124(2):537-549. doi:10.1007/s00421-023-05295-0
71. Rokkedal-Lausch T, Franch J, Poulsen MK, et al. Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide. Apr 1 2019;85:44-52. doi:10.1016/j.niox.2019.01.011
72. Palevo G, Williams N, Harp A, Barring E, Mize LB. High Concentrated Beetroot Juice Supplement Improves Cycling Power, VO 2, Time to Exhaustion, Heart Rate and Anaerobic Threshold in Trained Cyclists. Journal of Exercise Physiology Online. 2019;22(4)
