Validity of B-Mode Ultrasound for Body Composition Assessment in the Field Original Research
Main Article Content
Keywords
Body Fat Percentage, Body Density, App-Based Ultrasound
Abstract
Introduction: Identifying an accurate, user friendly alternative to skinfold calipers may allow for accurate assessment of body composition in more applied settings, such as various training and competition venues. The purpose of our study was to determine the validity of B-mode ultrasound (BMUS) for body composition assessment by comparing this method to values obtained using air displacement plethysmography (ADP).
Methods: Twenty-four active runners underwent two forms of body composition assessment during a single lab visit; ADP and BMUS. ADP body density was estimated using an air displacement chamber in combination with measured lung volume. BMUS body density was estimated from measuring the Jackson-Pollock 7 site skinfolds with a portable, app-based ultrasound device to determine subcutaneous fat thickness. Images were analyzed using proprietary software. Body density values for both methods were converted to body fat percentage using the Siri equation. A paired samples t-test was used to compare values obtained from ADP and BMUS.
Results: There was no difference between ADP (18.3 ± 7.3%) and BMUS (17.2 ± 7.6%; p = 0.1) for percent body fat.
Conclusions: BMUS provides a valid method for assessing body composition when compared to ADP, thus providing a portable, accurate method for assessing body composition in applied settings.
References
2. Loucks AB. Energy balance and body composition in sports and exercise. Journal of Sports Sciences. 2004;22(1):1-14. doi:10.1080/0264041031000140518
3. Kuriyan R. Body composition techniques. Indian J Med Res. 2018;148(5):648-658. doi:10.4103/ijmr.IJMR_1777_18
4. Wagner DR, Heyward VH. Measures of body composition in blacks and whites: a comparative review. The American Journal of Clinical Nutrition. 2000;71(6):1392-1402. doi:10.1093/ajcn/71.6.1392
5. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. British Journal of Nutrition. 1978;40(3):497-504. doi:10.1079/BJN19780152
6. Wagner DR, Thompson BJ, Anderson DA, Schwartz S. A-mode and B-mode ultrasound measurement of fat thickness: a cadaver validation study. Eur J Clin Nutr. 2019;73(4):518-523. doi:10.1038/s41430-018-0085-2
7. Baranauskas MN, Johnson KE, Juvancic-Heltzel JA, et al. Seven-site versus three-site method of body composition using BodyMetrix ultrasound compared to dual-energy X-ray absorptiometry. Clinical Physiology and Functional Imaging. 2017;37(3):317-321. doi:10.1111/cpf.12307
8. Pineau JC, Filliard JR, Bocquet M. Ultrasound Techniques Applied to Body Fat Measurement in Male and Female Athletes. Journal of Athletic Training. 2009;44(2):142-147. doi:10.4085/1062-6050-44.2.142
9. Wagner DR, Cain DL, Clark NW. Validity and Reliability of A-Mode Ultrasound for Body Composition Assessment of NCAA Division I Athletes. PLOS ONE. 2016;11(4):e0153146. doi:10.1371/journal.pone.0153146
10. Müller W, Horn M, Fürhapter-Rieger A, et al. Body composition in sport: a comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement. Br J Sports Med. 2013;47(16):1028-1035. doi:10.1136/bjsports-2013-092232
11. Müller W, Horn M, Fürhapter-Rieger A, et al. Body composition in sport: interobserver reliability of a novel ultrasound measure of subcutaneous fat tissue. British journal of sports medicine. 2013;47(16):1036-1043.
12. Chandler AJ, Cintineo HP, Sanders DJ, et al. Agreement between B-Mode Ultrasound and Air Displacement Plethysmography in Preprofessional Ballet Dancers. Medicine & Science in Sports & Exercise. 2021;53(3):653-657. doi:10.1249/MSS.0000000000002489
13. WYON M. Testing an aesthetic athlete: contemporary dance and classical ballet dancers. In: Sport and Exercise Physiology Testing Guidelines. Routledge; 2007.
14. Kuczmarski RJ, Fanelli MT, Koch GG. Ultrasonic assessment of body composition in obese adults: overcoming the limitations of the skinfold caliper. The American Journal of Clinical Nutrition. 1987;45(4):717-724. doi:10.1093/ajcn/45.4.717
15. Weits T, van der Beek EJ, Wedel M. Comparison of ultrasound and skinfold caliper measurement of subcutaneous fat tissue. Int J Obes. 1986;10(3):161-168.
16. Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. The American Journal of Clinical Nutrition. 2002;75(3):453-467. doi:10.1093/ajcn/75.3.453
17. McCrory MA, Gomez TD, Bernauer EM, Molé PA. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc. 1995;27(12):1686-1691.
18. McCrory MA, Molé PA, Gomez TD, Dewey KG, Bernauer EM. Body composition by air-displacement plethysmography by using predicted and measured thoracic gas volumes. Journal of Applied Physiology. 1998;84(4):1475-1479.
19. Nunez C, Kovera AJ, Pietrobelli A, et al. Body composition in children and adults by air displacement plethysmography. European journal of clinical nutrition. 1999;53(5):382-387.
20. Vescovi JD, Zimmerman SL, Miller WC, Hildebrandt L, Hammer RL, Fernhall B. Evaluation of the BOD POD for estimating percentage body fat in a heterogeneous group of adult humans. Eur J Appl Physiol. 2001;85(3):326-332. doi:10.1007/s004210100459
21. Vescovi JD, Zimmerman SL, Miller WC, Fernhall B. Effects of clothing on accuracy and reliability of air displacement plethysmography: Medicine and Science in Sports and Exercise. 2002;34(2):282-285. doi:10.1097/00005768-200202000-00016
22. Wagner DR, Teramoto M. Interrater reliability of novice examiners using A-mode ultrasound and skinfolds to measure subcutaneous body fat. PloS one. 2020;15(12):e0244019.
23. Bielemann RM, Gonzalez MC, Barbosa-Silva TG, et al. Estimation of body fat in adults using a portable A-mode ultrasound. Nutrition. 2016;32(4):441-446.